Large Language Model Market Size, Share, and Growth Forecast, 2025 - 2032

Large Language Model Market By Offering (Software and Services), Deployment Mode (On-Premises, Cloud-based, Hybrid), Modality, Application, Vertical, and Regional Analysis for 2025 - 2032

ID: PMRREP35588

Format: PPT*, PDF, EXCEL

Last Updated: 4 Sep 2025

Industry: IT and Telecommunication

Number of Pages: 191

Persistence Market Research Report, Market Growth and Regional Outlook

Large Language Model Market Size and Trends

The global large language model market size is likely to be valued at US$7.6 Bn in 2025 and is expected to reach US$60.2 Bn by 2032 growing at a CAGR of 34.6% during the forecast period from 2025 to 2032.

LLMs are rapidly gaining traction as organizations leverage AI for automation, decision-making, and personalized interactions.

Growing digitalization and demand for intelligent engagement drive adoption in chatbots, virtual assistants, and customer service. Enterprises use these systems to boost productivity, optimize costs, and accelerate innovation.

Key Industry Highlights

  • Leading Region: North America, holding over 34% in the large language model market in 2025, driven by strong adoption of AI in enterprise automation, customer engagement, and decision-making processes.
  • Fastest-growing Region: Asia Pacific, due to rapid digital transformation, massive internet user growth, and strong investments in AI research and cloud infrastructure to support localized applications across diverse languages.
  • Investment Plans: Europe, emphasizing ethical and transparent AI, supported by the AI Act, Horizon Europe’s €95 Bn (US$103 Bn) budget, and research collaborations through CLAIRE and ELLIS to advance responsible LLM deployment.
  • Dominant Offering: Software, over 65% market share in 2025, due to rising enterprise adoption of AI-driven applications for automation and efficiency, supported by the scalability and flexibility of cloud-based solutions. Continuous advancements in pre-trained models and open-source frameworks further boost accessibility and cost-effectiveness.
  • Leading Vertical: IT & Telecom, holding over 28% market share in 2025, the growing need to handle massive volumes of unstructured data, optimize network operations, and enable real-time decision-making.

global-large-language-model-market-size-2025–2032

Global Market Attribute

Key Insights

Large Language Model Size (2025E)

US$7.6 Bn

Market Value Forecast (2032F)

US$60.2 Bn

Projected Growth (CAGR 2025 to 2032)

34.6%

Historical Market Growth (CAGR 2019 to 2024)

21.4%

Market Dynamics

Driver - Rising Demand for Scalable and Powerful LLMs

The accelerating adoption of generative AI across areas such as content creation, customer engagement, software development, and data analysis is creating a strong need for advanced LLMs. Organizations are adopting these models to improve efficiency, automate workflows, and enhance decision-making, which will drive the demand for more powerful and scalable solutions. This rapid expansion has positioned LLMs as a core enabler of digital transformation across industries.

For instance :

  • According to a study by Kong Inc., 72% of businesses plan to increase spending on these models by 2026, with nearly 40% expecting to invest over US$250,000 in 2025.
  • Henry Jammes, Conversational AI Principal PM at Microsoft, estimates that by 2025, 750 million apps will be built using LLMs, with 50% of digital work expected to be automated by current technologies.

Restraint - Model Biases and Reliability Issues

Bias in large language models arises from the datasets they are trained on, which often reflect historical prejudices, stereotypes, and uneven representation of gender, race, or culture. When training data is skewed toward certain viewpoints, models tend to generate outputs that either favor dominant perspectives or misrepresent marginalized groups, undermining fairness and inclusivity. This persistent challenge highlights the structural limitations of AI systems that rely heavily on vast but imperfect data sources.

Even with substantial advancements, studies conducted in 2024 revealed notable disparities in leading models such as GPT-4o, Gemini 1.5 Pro, Claude 3 Opus, and LLaMA 3 70B, with findings indicating up to 37% gender bias in occupational role representation and 54% racial skew in responses to crime-related prompts.

These findings have attracted scrutiny from regulators. Authorities, including Italy’s privacy agency, have labeled these systems "black boxes" due to the lack of transparency in training data and decision-making processes, raising concerns about oversight and accountability.

Opportunity - Domain-Specific Training and Fine-Tuning of LLMs

Specialized training of LLMs on domain-focused datasets such as medical records, legal documents, or financial reports enables more accurate and context-aware applications. Fine-tuning builds on this by refining pre-trained models for targeted applications, including customer support, compliance monitoring, or multilingual communication.

For instance, emerging parameter-efficient fine-tuning (PEFT) methods such as LoRA and QLoRA introduced in 2024 have made the process more affordable by updating only select parameters, reducing computational requirements, and retaining the model’s core knowledge.

Open-source initiatives, such as OpenRFT, have demonstrated that fine-tuning with as few as 100 domain-specific samples can significantly improve reasoning in specialized tasks, such as scientific problem-solving. These advancements enable enterprises to deploy models that deliver precise, culturally relevant, and deployment-friendly solutions, creating pathways for the market to address varied enterprise requirements and capture growth in specialized market segments.

Trend - Rising Emphasis on Responsible and Ethical AI

Developers of large language models are increasingly prioritizing responsible AI practices by integrating reinforcement learning from human feedback (RLHF) to enhance alignment with human values and minimize harmful outputs. For instance, DeepMind emphasizes fairness and transparency through published ethical frameworks, while OpenAI has advanced model behavior in GPT-4 with iterative human feedback. These initiatives reflect the growing importance of building trust and accountability in AI systems.

To strengthen ethical AI development, industry leaders are collaborating with academic institutions and non-profits to set global standards. Apple has joined the Partnership on AI to promote responsible practices, while Microsoft supports ethical adoption through its internal AETHER Committee and partnerships with research organizations. Publicly shared guidelines and frameworks highlight a broader trend of transparency, accountability, and industry-wide best practices, shaping the long-term adoption of large language models.

Category-wise Analysis

Offering Insights

Based on offering, the market is segmented into software and services. Among these, the software segment is anticipated to dominate with an estimated market share of over 65% in 2025, driven by rapid deployment and broad accessibility of foundational models and API-based solutions.

For instance, OpenAI’s paying business users grew from 3 million in June to 5 million in August, reflecting the growing enterprise and educational embrace of AI software. Organizations are increasingly relying on these software tools to enhance productivity, streamline operations, and support scalable deployment.

The services segment is projected to grow at a significant rate due to increasing demand for AI integration, customization, and deployment support. Organizations are seeking expert services for the implementation, optimization, and maintenance of AI solutions to enhance productivity and operational efficiency. The rising adoption of cloud-based and hybrid AI environments is fueling the need for professional services that ensure seamless deployment and scalability.

Vertical Insights

Based on vertical, the market is segmented into IT & telecom, BFSI, healthcare & life sciences, education, retail & e-commerce, government & public sector, manufacturing, media & entertainment, and others. The IT & Telecom segment is expected to lead, accounting for over 28% of the share in 2025, due to the growing need for automation, real-time communication, and advanced data processing.

Telecom companies are adopting LLMs to enhance customer service with AI chatbots, optimize network performance via predictive analytics, and deliver personalized experiences. A 2024 NVIDIA study found nearly 90% of telecom providers had integrated AI into their operations, highlighting rapid industry adoption.

The healthcare & life sciences sector is expected to grow at a significant rate, due to the growing demand for efficient data analysis, personalized patient care, and accelerated drug discovery. Leveraging LLMs for medical research, diagnostics, and automated documentation is boosting operational efficiency and innovation in the sector. According to a study, ChatGPT achieved 60.3% accuracy in generating differential diagnoses based on patient history and physical exams, highlighting its growing clinical relevance.

global-large-language-model-market-outlook-by-vertical-2025–2032

Regional Insights

North America Large Language Model Market Trends

North America is projected to be the dominant region, accounting for an estimated share of more than 34% in 2025, due to its robust technological infrastructure, significant investments in AI research, and the presence of leading AI organizations.

The U.S. hosts major players such as OpenAI, Google, Microsoft, and Meta, which are at the forefront of developing advanced LLMs such as GPT-4, Gemini, and Llama. These organizations benefit from access to vast computational resources, talent pools, and funding, enabling them to push the boundaries of AI capabilities.

Government support, through agencies such as the National Science Foundation (NSF) and the Department of Defense (DoD), further accelerates LLM development by funding AI research and establishing initiatives.

For instance, the U.S. National Science Foundation (NSF) launched a US$9 Mn grant in May 2024 to Northeastern University to develop the National Deep Inference Fabric, designed to advance open scientific understanding of LLM internal mechanics and societal impacts. The U.S. Department of Energy allocated US$68 Mn in late 2024 for multi-institutional projects building foundation models, including energy-efficient and privacy-preserving AI, core building blocks of modern LLM systems.

Asia Pacific Large Language Model Market Trends

Asia Pacific is likely to be the fastest-growing region in 2025, driven by a surge in government investment, infrastructure expansion, public-private partnerships, localized model development, and vibrant startup ecosystems.

For instance, in Singapore, the government-funded US$70 Mn National Multimodal LLM Programme (NMLP), launched by IMDA, A*STAR, and AI Singapore, aims to build Southeast Asia’s first multimodal LLM ecosystem, SEA-LION, tailored for regional languages and cultural contexts. This initiative accelerates LLM research and development, enables homegrown model deployment, and cultivates local talent, positioning Singapore as a regional AI innovation hub in 2024.

China dominates research and development, backed by the New Generation Artificial Intelligence Development Plan, vast digital data volumes, and tech giants such as Baidu, Alibaba, Tencent, and Huawei. Huawei’s PanGu Σ, released in mid 2024 with over 1 trillion parameters, exemplifies this growth.

By mid 2024, China had approximately 230 million generative AI users, reflecting massive commercial uptake. Businesses leverage these models to enhance chatbots, virtual assistants, and data-driven decision-making, while expansion in IT, telecom, and e-commerce sectors fuels strong demand for AI-driven language solutions.

Europe Large Language Model Market Trends

Europe is a strategic hub for large language models due to its strong commitment to ethical AI governance, regulatory frameworks, and robust public-private research networks. The EU’s AI Act ensures transparency, safety, and human oversight, creating a trusted environment for AI adoption. Countries including Germany, France, and the Netherlands have launched national AI strategies and funded research centers such as Fraunhofer Institutes and INRIA, supporting innovation in LLMs.

The demand is further driven by Europe’s multilingual population, enterprise digitalization, and collaboration across academia and industry. Programs such as Horizon Europe, with a budget exceeding €95 Bn (US$103 Bn), and initiatives by CLAIRE (Confederation of Laboratories for AI Research in Europe) and ELLIS (European Laboratory for Learning and Intelligent Systems) strengthen foundational AI research and deployment. LLMs are increasingly needed for language translation, virtual assistants, and customer service automation, positioning Europe as a leader in responsible and scalable AI solutions.

global-large-language-model-market-outlook-by-region-2025–2032

Competitive Landscape

The global large language model market is shifting from a fragmented space of niche startups to a more consolidated landscape, as major tech giants acquire or outpace smaller players. The number of key providers is expected to shrink in the coming years due to economic pressures and demand for unified platforms. Companies are driving this shift through acquisitions, open-source initiatives, strategic partnerships, and infrastructure control to deliver scalable, integrated AI solutions that simplify adoption and boost enterprise value.

Key Industry Developments

  • In February 2025, Capgemini launched a generative AI-driven protein engineering methodology powered by a proprietary protein large language model (pLLM). The patented approach slashes required protein design datapoints by 99%, cutting R&D time and costs. This enables faster, more affordable biosolutions across healthcare, agriculture, and environmental science.
  • In February 2025, SECQAI unveiled the world’s first hybrid Quantum Large Language Model (QLLM). This new AI combines quantum computing with traditional language models, making them faster and smarter. It could enable major advancements in areas including chip design, cybersecurity, and pharmaceutical innovation.

Companies Covered in Large Language Model Market

  • OpenAI
  • Google
  • Anthropic
  • Microsoft
  • Meta
  • Amazon Web Services (AWS)
  • IBM Corporation
  • Cohere
  • Mistral AI
  • Stability AI
  • NVIDIA

Frequently Asked Questions

The large language model market is projected to be valued at US$7.6 Bn in 2025.

Rising AI-powered automation, advanced data analysis, and personalized digital experiences across industries are key drivers.

The large language model market is poised to witness a CAGR of 34.6% from 2025 to 2032.

The growing demand for domain-specific expertise and multilingual support is creating substantial opportunities.

OpenAI, Google, Anthropic, Microsoft, Meta, Amazon Web Services (AWS), IBM Corporation, Cohere, Mistral AI, Stability AI, NVIDIA are among the leading key players.

Global Large Language Model Market Report Scope

Report Attribute

Details

Historical Data/Actuals

2019 - 2024

Forecast Period

2025 - 2032

Market Analysis

Value: US$ Bn

Geographical Coverage

  • North America
  • Europe
  • East Asia
  • South Asia & Oceania
  • Latin America
  • Middle East &Africa

Segmental Coverage

  • Offering
  • Deployment Mode
  • Modality
  • Application
  • Vertical
  • Region

Competitive Analysis

  • OpenAI
  • Google
  • Anthropic
  • Microsoft
  • Meta
  • Amazon Web Services (AWS)
  • IBM Corporation
  • Cohere
  • Mistral AI
  • Stability AI
  • NVIDIA

Report Highlights

  • Market Forecast and Trends
  • Competitive Intelligence and Share Analysis
  • Growth Factors and Challenges
  • Strategic Growth Initiatives
  • Pricing Analysis
  • Future Opportunities and Revenue Pockets
  • Market Analysis Tools

Customization and Pricing

Available upon request

Market Segmentation

By Offering

  • Software
  • Services

By Deployment Mode

  • On-Premises
  • Cloud-based
  • Hybrid

By Modality

  • Text
  • Code
  • Image
  • Video

By Application

  • Chatbots & Virtual Assistants
  • Content Generation
  • Code Generation & Software Development
  • Customer Service Automation
  • Language Translation & Localization
  • Others

By Vertical

  • IT & Telecom
  • BFSI
  • Healthcare & Life Sciences
  • Education
  • Retail & E-commerce
  • Government & Public Sector
  • Manufacturing
  • Media & Entertainment

By Region

  • North America
  • Europe
  • East Asia
  • South & Oceania
  • Latin America
  • Middle East & Africa

For more information on this report and its delivery timelines please get in touch with our sales team.

About Author

Sayali Mali

Sayali Mali

Senior Associate Consultant

Sayali is a Senior Associate Consultant in the information technology and semiconductor divisions at Persistence Market Research. With over three years of specialized experience in technology mapping, software, and AI applications in the agriculture sector, she provides in-depth market insights that propel strategic decision-making. Her analytical expertise and industry knowledge support clients in navigating complex technological developments and the latest market trends.

Read More →

Thank you for taking time to visit our website, click like if you found the information on this page useful?

This site uses cookies, including third-party cookies, that help us to provide and improve our services.
Google translate